

Пакет программ Логос для численного моделирования физических процессов

18.09.2023

Королева Анастасия Павловна

Руководитель направления по техническому консалтингу

ООО «Русатом – Цифровые Решения»

Общие сведения о программном комплексе

Разрабатывается в РФЯЦ-ВНИИЭФ с 2009 года

Включен в Единый реестр российских программ для ЭВМ и баз данных Минцифры России

Поддержан Президентом России

ЛОГОС АЭРО-ГИДРО

POCATOM

Моделирование аэро-, гидро-, газодинамических процессов

ЛОГОС ТЕПЛО РОСАТОМ

Моделирование процессов теплопередачи и фазовых переходов

ЛОГОС ЭМ РОСАТОМ

Моделирование электромагнитных процессов

логос прочность

POCATOM

Моделирование процессов статической и динамической прочности

ЛОГОС ГИДРОГЕОЛОГИЯ

Моделирование процессов поверхностного стока и подземной гидродинамики

Расчётные модули для моделирования физических процессов

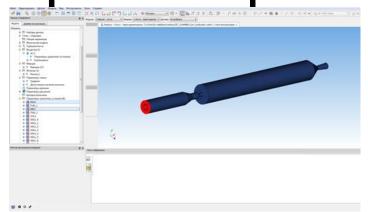
ЛОГОС ПЛАТФОРМА РОСАТОМ

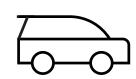
Интеграция расчетных моделей и сторонних программных средств

ЛОГОС ДАННЫЕ РОСАТОМ

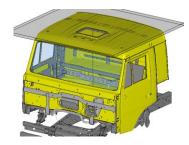
_ | 202

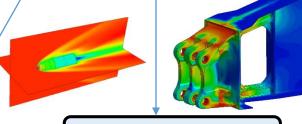
Управление проектными и расчетными данными


Среда организации взаимодействия инженерного ПО Управление данными инженерных проектов

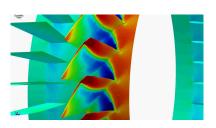

JOFOC TPETOCTPOCATOM

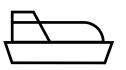
Подготовка расчетных моделей, анализ результатов


Отраслевое применение

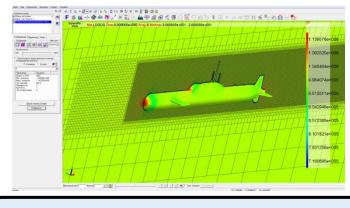

Модуль подготовки расчетной модели

Авиа- Автомобилестроение строение

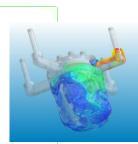


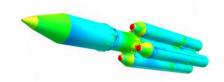


Расчетные модули


Двигателестроение

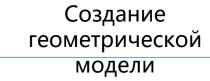
Судостроение

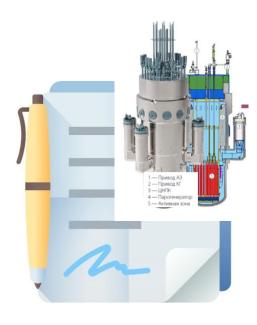


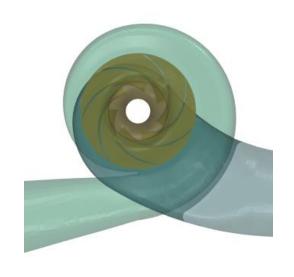

Модуль обработки результатов расчетов

Энергетика

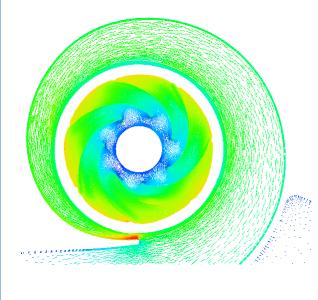
Ракетнокосмическая отрасль



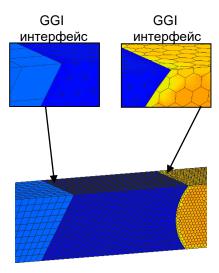

Этапы выполнения инженерных расчетов при помощи численного моделирования

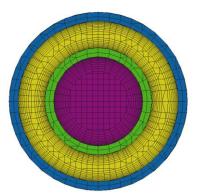

Описание расчетной задачи (техническое задание, расчетная схема)

Создание расчетной модели (построение сетки, задание начальных и граничных условий

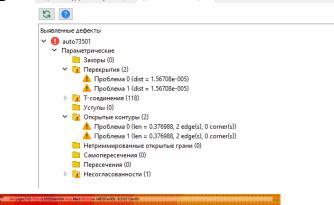

Проведение расчета, обработка результатов

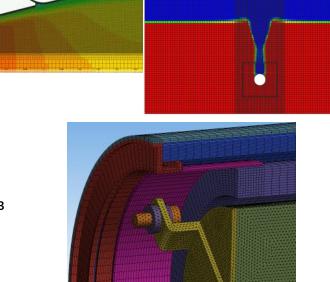
<u>CAD-система</u> (например КОМПАС-3D)

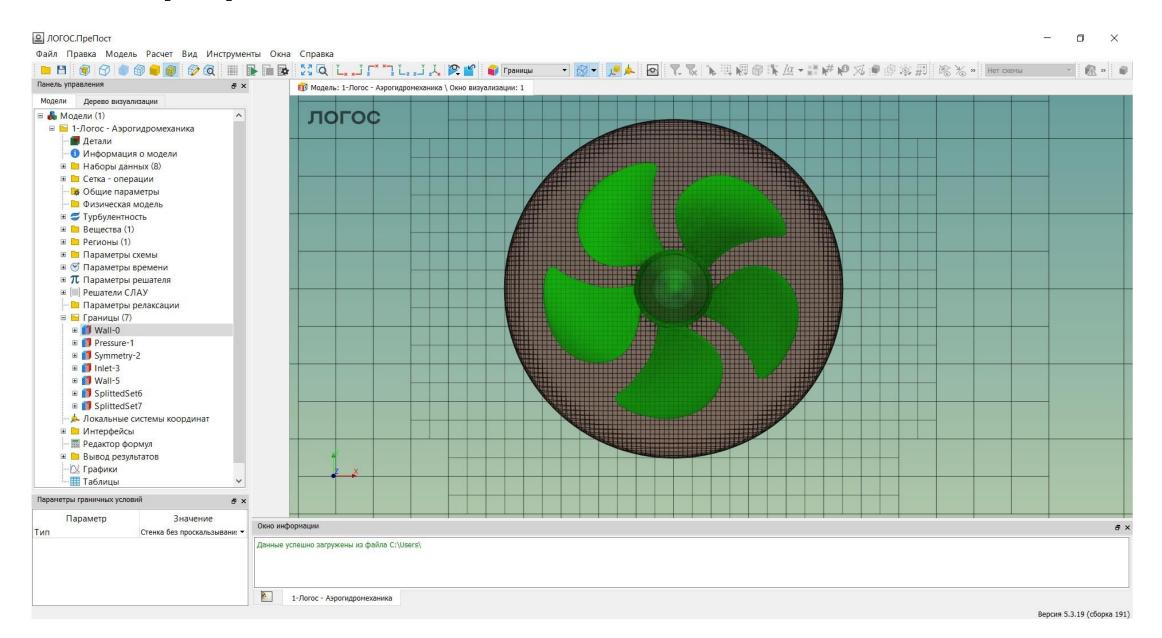



<u>САЕ-продукт</u> Логос Аэро-Гидро, Логос Тепло, Логос Прочность \rightarrow

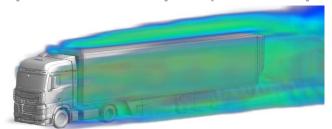
Логос - Подготовка моделей и обработка результатов


Подготовка моделей и анализ результатов в интерактивном режиме



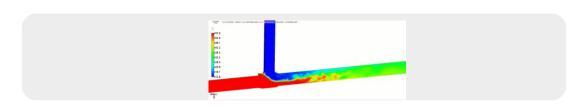

Работа с геометрическими моделями:

- Импорт из популярных CAD-форматов в аналитическом и фасеточном представлении (XML, STEP, IGES, STL)
- Создание простых геометрических объектов
- Трансформация геометрических моделей
- Диагностика геометрии и автоматическое исправление ошибок
- Редактирование и доработка геометрической модели
- Создание расчетных сеток:
 - Автоматическая генерация тетраэдральной и многогранной сеток
 - Автоматическая генерации сетки методом отсечения
 - Автоматическая генерация пристеночной призматической сетки-
 - Калькулятор у+ для оценки размера первой ячейки
 - Операции по редактированию и анализу качества сеток
 - Локальная адаптация
 - Назначение интерфейсов
 - Технологии подвижных и деформируемых сеток
- Импорт сеточных моделей (ngeom, mesh, msh, stl)
- Задание начальных и граничных условий
- Задание параметров решателей и тактики счета, запуск на расчет:
 - Выбор типа решателя, параметров физической модели, критериев окончания счета и т.д.
 - Удаленный запуск на суперкомпьютере
- Постобработка результатов с помощью системы визуализации



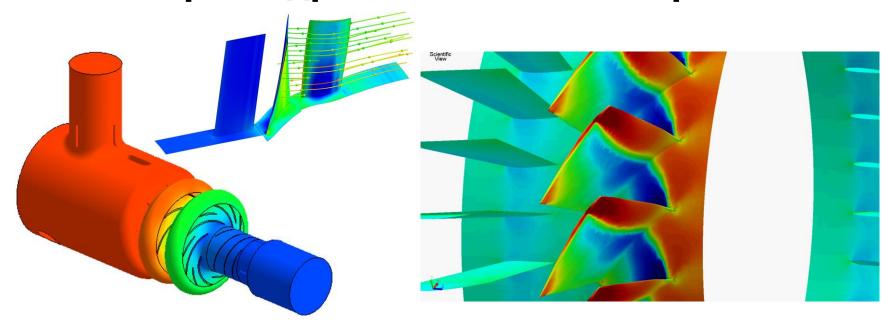
Пакет программ Логос

Решатели

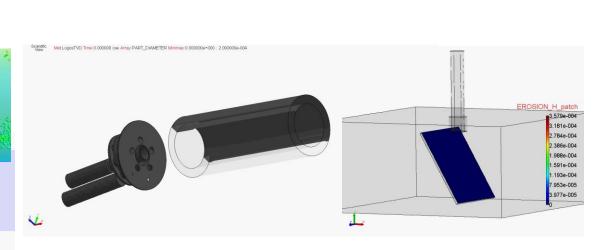

Связанный решатель «Аэро» (TVD Coupled Solver)

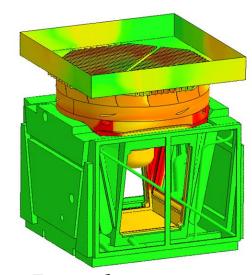
- Вязкие и невязкие течения
- Идеальный и реальный газ (Ван-дер-Ваальс и Редлих-Квонг), реальный воздух, несжимаемая жидкость
- RANS-модели: SA, SST, SSG/LRR-w (RSM)
- Вихреразрешающие модели: LES, DDES, IDDES, EDES
- Генератор синтетической турбулентности для входных граничных условий
- γ-Reθ- модель ламинарнотурбулентного перехода
- Многокомпонентные течения

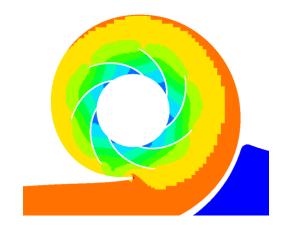
- Модель квазичастиц (дисперсные среды), тонких пленок и эрозии
- Химические реакции и горение (Laminar FRC, EBU, EDC)
- Модель теплокомфорта
- DO-метод переноса тепла излучением
- Адаптация сетки к особенностям решения
- Модель FWH для шума в дальнем поле
- Стандартная модель атмосферы


Разделенный решатель «Гидро» (алгоритм Simple)

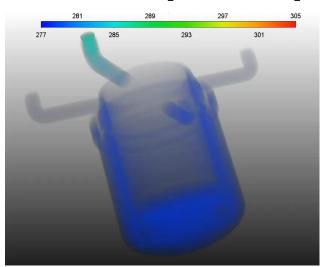
- Вязкие и неньютоновские жидкости
- Несжимаемая и сжимаемая жидкости, а также идеальный газ
- RANS-модели: SA, SST, K-E, EARSM, BSL
- Вихреразрешающие модели: LES, DES, DDES, IDDES
- Генератор синтетической турбулентности для входных граничных условий и внутренних интерфейсов


- Зонные подходы RANS-LES и RANS-IDDES
- Течения со свободной поверхностью VOF
- Морфинг
- Кавитирующие течения на основе гомогенного представления
- Многофазные течения
- Модель твердого тела
- Интерфейс «жидкость твердое тело» для задач сопряженного теплообмена

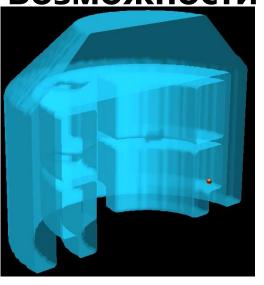

Логос Аэро-Гидро. Возможности и решаемые задачи


Дисперсные среды, распространение частиц, эрозия

Лопаточные машины, насосы и подвижные механизмы

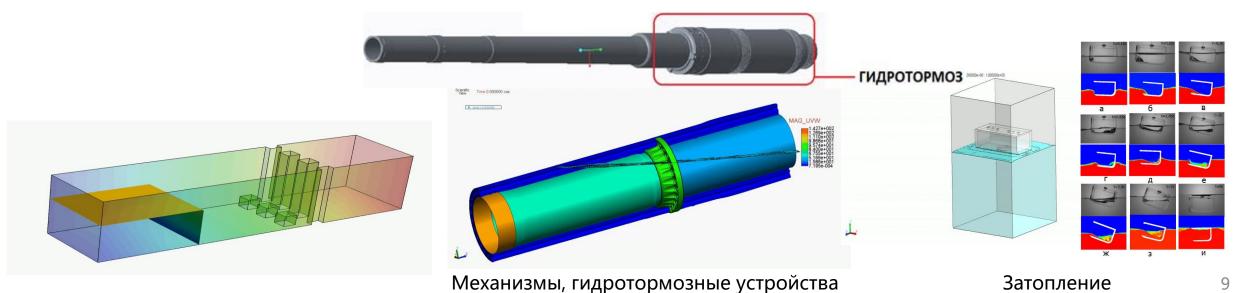


Теплообмен в модуле охлаждения локомотива

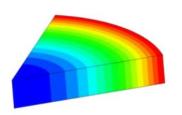


Расчёт центробежного насоса ⁸

Логос Аэро-Гидро. <u>Возможности</u> и решаемые задачи


Течения в трубопроводах и гидравлических системах

Горение водородосодержащих смесей


Течение в газодинамической трубе

Решение задач теплообмена

Решатель тепло в твердом теле НЕАТ

Тепловые расчеты

- Стационарные/нестационарные процессы
- Анизотропная теплопроводность
- Зависимость параметров от базовых и произвольных величин
- Импорт начальных условий с предыдущих расчётов

Излучение

- Излучение в вакууме
- Излучение в теплопроводной среде
- Границы с симметрией излучения
- Излучение внешней среды
- Излучение при сопряженном теплообмене
- Зависимость степени черноты от температуры
- Зависимость температуры излучения среды от времени

Фазовый переход

- Абляция/эрозия
- Необратимый фазовый переход
- Множественный фазовый переход

Граничные условия

- Температура
- Тепловой поток
- Конвективный теплообмен
- Излучающая стенка

Контакт

• Автоматический температурный контакт

Источники энерговыделения

- Объемный источник энерговыделения
- Мгновенный источник энерговыделения

Термическое сопротивление

• Внутреннее сопротивление

Нагрев и воспламенение веществ

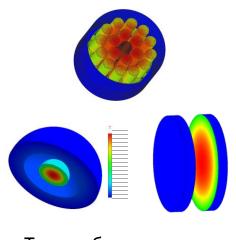
• 1, 3, 4 стадийные модели кинетики

Сопряженный теплообмен

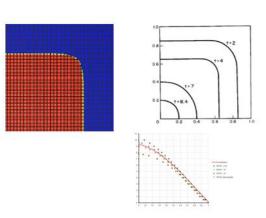
- Стационарный/нестационарный сопряженный теплообмен
- Сопряженный теплообмен системы подвижных тел

Подвижные тела и формоизменение

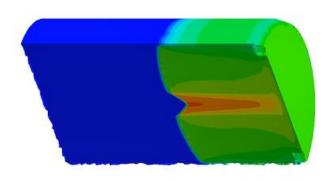
- Движение как жесткого тела
- Тела с подвижными границами

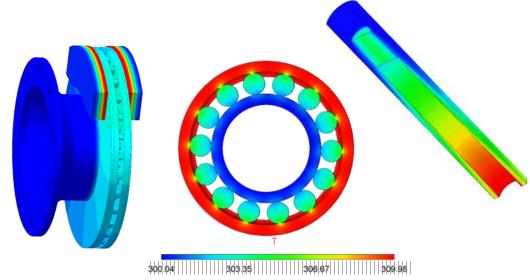

Эргономичность/устойчивость/быстродействие

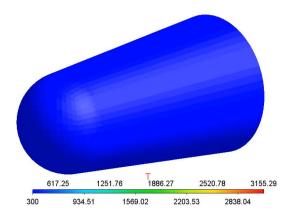
- Пользовательское параметры, задание таблиц и формул
- Задание величин в произвольных локальных системах координат
- Схемы повышения устойчивости на плохих сетках
- Гибкая настройка решателей СЛАУ


Возможности вывода результатов

- Мониторинг величин
- Пользовательский вывод


Решение задач теплообмена


Теплообмен излучением

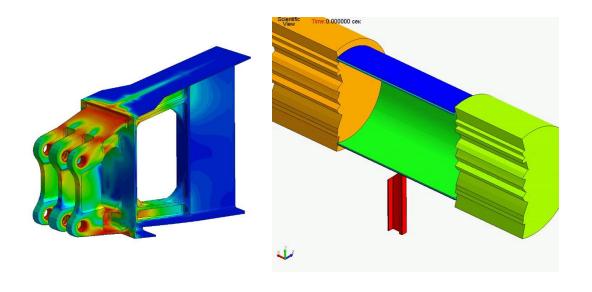

Фазовый переход

Инициация и горение пиротехнических составов

Подвижные тела и температурный контакт

Изменение геометрии границы, унос массы (абляция/эрозия)

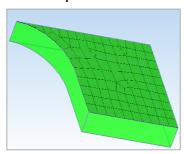
Функциональные возможности для решения задач


прошасти

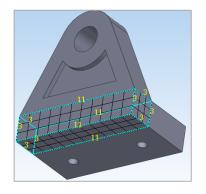
Определение напряженно-деформированного состояния конструкций при квазистатических термосиловых воздействиях

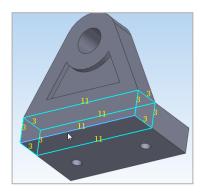
Динамическое деформирование и разрушение конструкций при ударах, взрывах и проникании в различные среды

Анализ частот и форм колебаний, гармонический анализ, анализ ШСВ



Логос Препост. Построение сеточной модели


- Работа с геометрическими моделями:
 - Импорт из популярных САD-форматов в аналитическом и фасеточном представлении
 - Создание простых геометрических объектов
 - Трансформация геометрических моделей
 - Диагностика геометрии и автоматическое исправление ошибок
 - Редактирование и доработка геометрической модели
- Создание расчетных сеток:
 - Автоматическая генерация сеток
 - Операции по редактированию и анализу качества сеток
- Импорт сеточных моделей из множества форматов
- Задание начальных и граничных условий
- Задание параметров решателей и тактики счета, запуск на расчет:
 - Выбор типа решателя, параметров физической модели, критериев окончания счета и т.д.
 - Удаленный запуск на суперкомпьютере
- Постобработка результатов с помощью системы визуализации

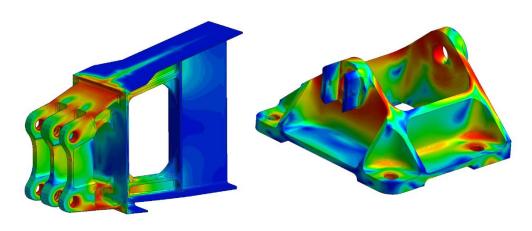

Автоматическое построение третраэдральной и шестигранной сетки

Построение объемной сетки протягиванием поверхностной

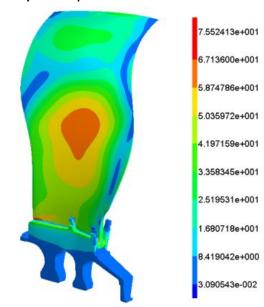
Построение регулярной сетки

По заданному распределению на каждом ребре

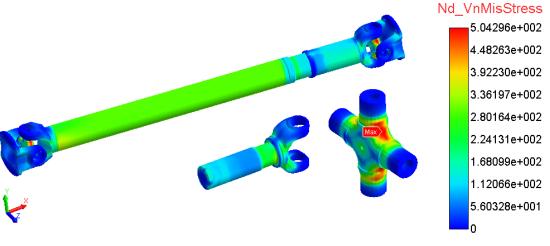
СТАТИЧЕСКИЙ АНАЛИЗ



- Библиотека конечных элементов:
 - Объемные элементы 1-го и 2-го порядка аппроксимации по пространству
 - шестигранники
 - тетраэдры
 - треугольные призмы
 - пирамиды с 4-угольным основанием
 - Оболочечные элементы
 - 3х и 4х узловой
 - гипотезы Кирхгофа, Тимошенко для учета мембранных/изгибных/сдвиговых деформаций
 - объемно-оболочечное приближение
 - Балочные/стержневые элементы
 - гипотезы Кирхгофа, Тимошенко
 - произвольный профиль сечения
 - объемно-балочное приближение

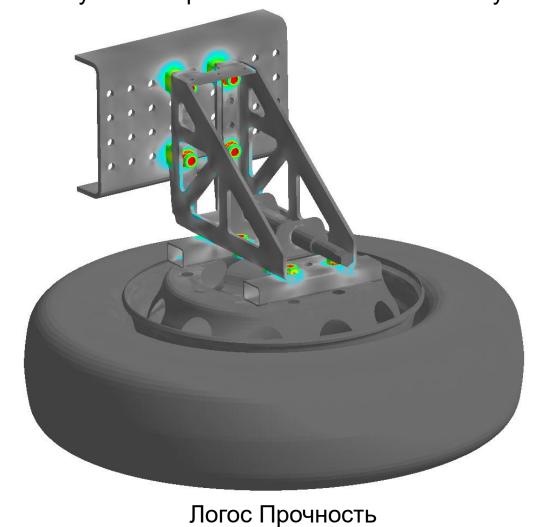

- Специализированные элементы
 - сосредоточенная масса
 - жесткие связи
 - многоточечные ограничения
 - пружина
 - болтовое/заклепочное соединения
 - шарниры
- Дополнительные функции формы и стабилизирующие добавки
 - ESF
 - simplified ESF
 - bbar
 - MITC
- Разные схемы интегрирования, учет локальной ориентации
- Модели материального деформирования:
 - Упругий материал

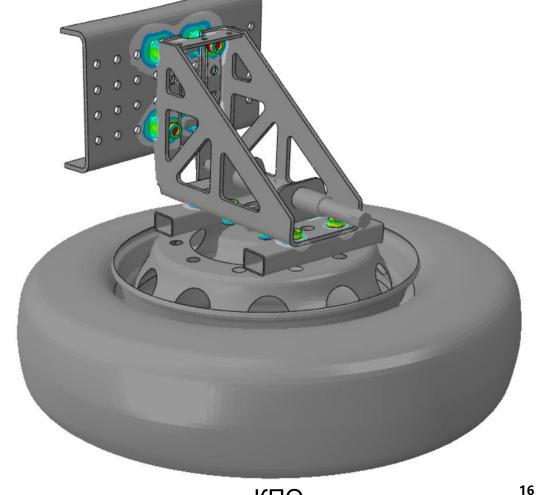
- Упругопластический материал
 - билинейная/мультилинейная диаграмма деформирования
 - изотропное/кинематическое упрочнение
- Учет нелинейных эффектов
 - ползучесть
 - повреждаемость
 - разномодульность
- Механика разрушения
 - набор критериев разрушения
 - модель прогрессирующего разрушения
 - метод когезионных зон для моделирования трещинообразования
- Слоистый композиционный материал на основе оболочечного элемента — учет разрушения
- Учет орто/анизотропии, температурные зависимости материальных констант, учет локальной ориентации
- Пользовательская модель материала


ПРИМЕРЫ ЗАДАЧ СТАТИЧЕСКОЙ ПРОЧНОСТИ

НДС шпангоута и кронштейна

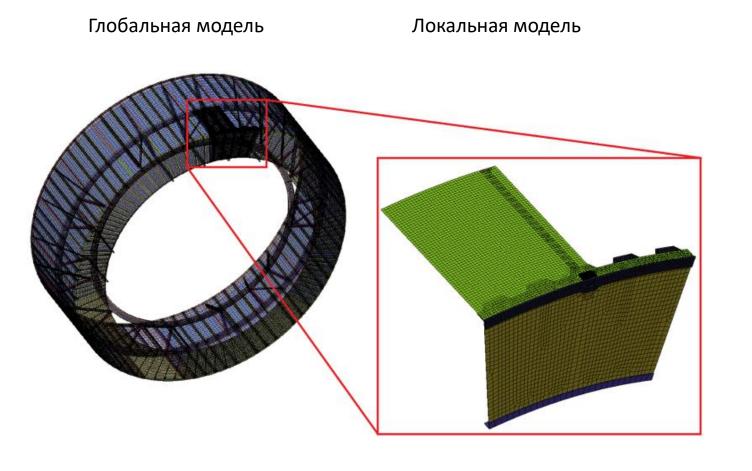
НДС лопатки вентилятора авиационного двигателя

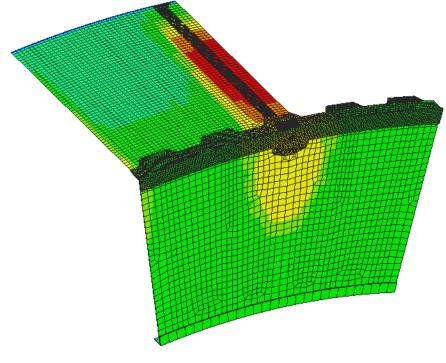

Расчет напряжений карданного вала заднего моста под действием крутящего момента



Панель из ортотропного материала в геометрически нелинейной постановке

ПРИМЕРЫ ЗАДАЧ СТАТИЧЕСКОЙ ПРОЧНОСТИ


Статический расчет кронштейна держателя запасного колеса автомобиля КАМАЗ-65656 на прочность в составе с участком рамы и запасного колеса с учетом предварительной затяжки болтовых соединений



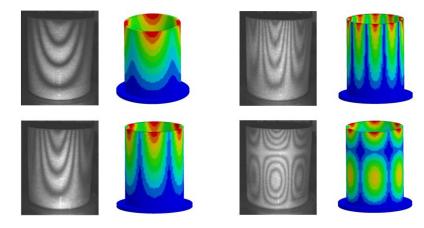
ПРИМЕРЫ ЗАДАЧ СТАТИЧЕСКОЙ ПРОЧНОСТИ

Определение НДС конструкции с применением технологии субмоделирования

Поле результирующих перемещений локальной модели

Displ_max: 3.88 mm (отклонение от эталона ~3%)

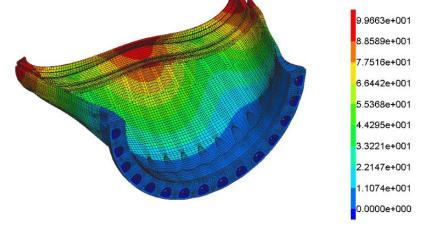
вибрационный анализ


- Типы конечных элементов
 - Объемные элементы 1-го и 2-го порядка аппроксимации по пространству
 - шестигранники
 - тетраэдры
 - треугольные призмы
 - пирамиды с 4-угольным основанием
 - Оболочечные элементы
 - ⁻ 3х и 4х узловой
 - гипотезы Кирхгофа, Тимошенко
 - Балочные/стержневые элементы
 - гипотезы Кирхгофа, Тимошенко
 - произвольный профиль сечения
 - Специализированные элементы
 - сосредоточенная масса
 - жесткие связи
 - многоточечные ограничения
 - пружина
 - амортизатор
 - болтовое/заклепочное соединения

- Дополнительные функции формы и стабилизирующие добавки
- Разные схемы интегрирования, учет локальной ориентации
- Модели материального деформирования
 - Изотропная
 - Ортотропная
 - Анизотропная линейная упругость
- Матрица масс
 - Редуцированная / согласованная
- Демпфирование
 - Глобальное (постоянное, в форме Рэлея)
 - По материалам (постоянное, в форме Рэлея)
 - По элементам (амортизаторы)

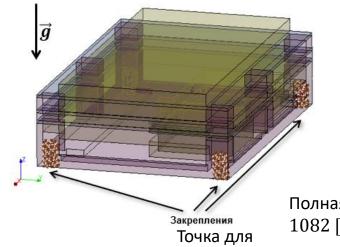
- Учет контактного взаимодействия между частями конструкции
 - Поддержка совместности деформаций
 - Контактное взаимодействие с учетом трения на основе метода штрафа
- Учет предварительного НДС
 - Изменение вибрационных характеристик конструкции ввиду действия предварительного нагружения
- Вычислительные методы
 - Прямые и итерационные методы для решения СЛАУ
 - Итерационный процесс Арнольди для поиска собственных значений и векторов

МОДАЛЬНЫЙ АНАЛИЗ


- Классический модальный анализ без учета демпфирования и модальный анализ с учетом демпфирования (редуцированный метод, глобальное демпфирование, материальное, элементное)
- Закрепленные / незакрепленные модели
- Линейно упругие материалы (изотропные, ортотропные, анизотропные)
- Учет предварительного напряженного деформированного состояния (включает нелинейное деформирование, контактное взаимодействие)
- Учет контактного взаимодействия для определения пятна контакта

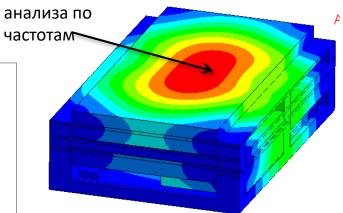
Анализ собственных частот и форм колебаний цилиндрической оболочки постоянной толщины

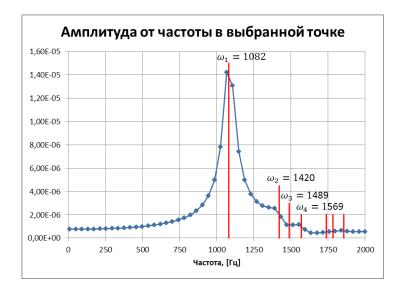
Displ_Result


Расчет собственных частот рабочего колеса турбины

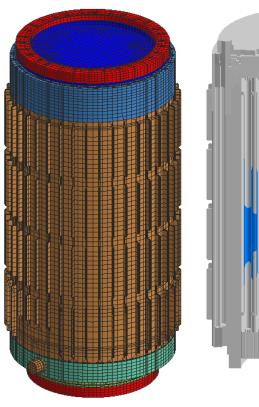
Расчет собственных частот и форм колебаний 9 корпуса опоры авиационного двигателя

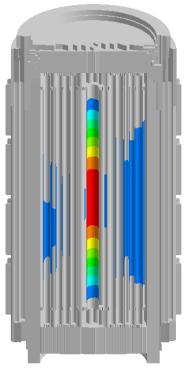
ГАРМОНИЧЕСКИЙ АНАЛИЗ

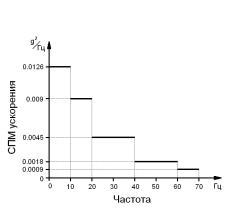

- Подходы
 - Полный метод
 - Метод суперпозиции собственных форм колебаний
- Учет предварительного НДС
- Демпфирование
 - Постоянное (по материалам, по элементам)
 - Модель Релея
- Нагрузки
 - Давление
 - Сосредоточенное усилие (сила, момент)
 - Инерционная нагрузка (ускорение)
 - Угловая скорость вращения
 - Термонагружение (температура в узлах)
 - Передача гидродинамических источников


Геометрия прибора

- Полный метод
- Постоянное и материально зависимые демпфирования
- 50 частот по \vec{q}

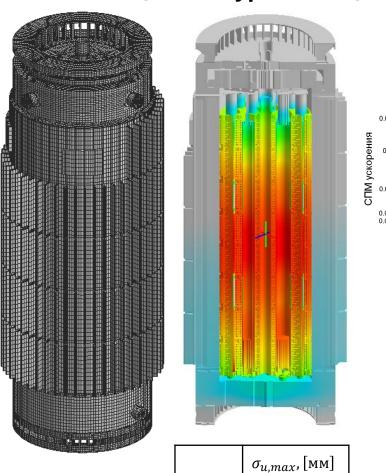

Полная амплитуда, $1082~[\Gamma \hbox{\scriptsize L}{\mbox{\scriptsize I}}]$

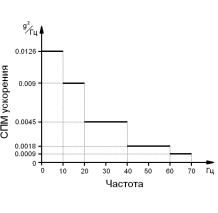




Вибрационная прочность
Расчет отклика транспортных упаковочных комплектов (ТУК) на действие ШСВ при транспортировании

ТУК-109Т (~6.8 млн уравнений)



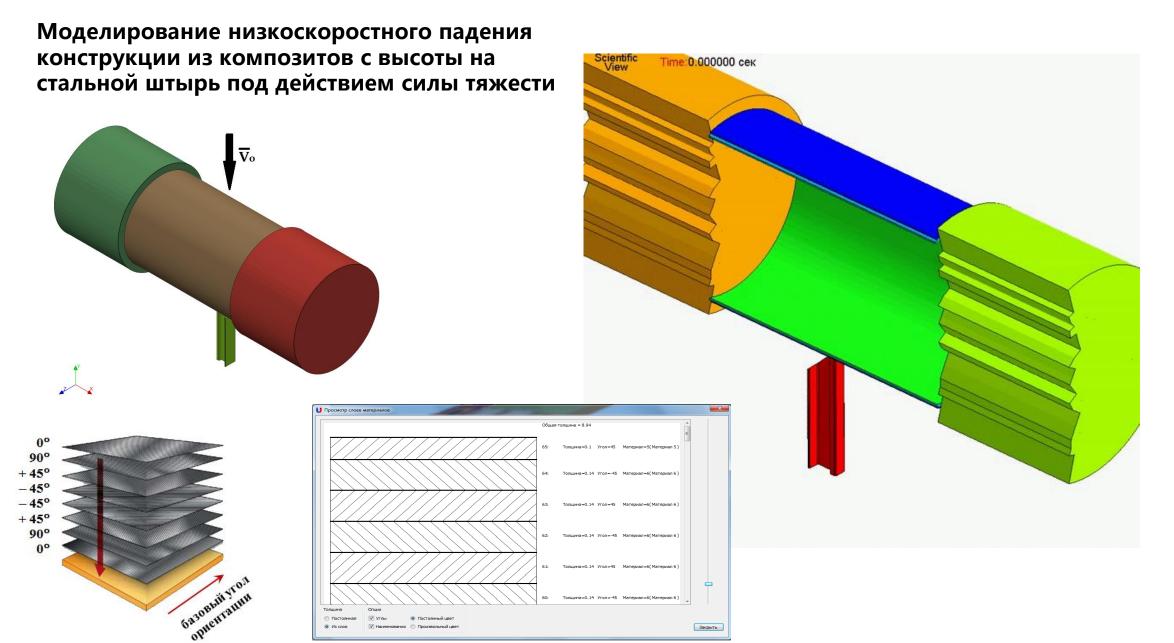


 $\sigma_{u,max}$, [MM] 0.120987 Логос

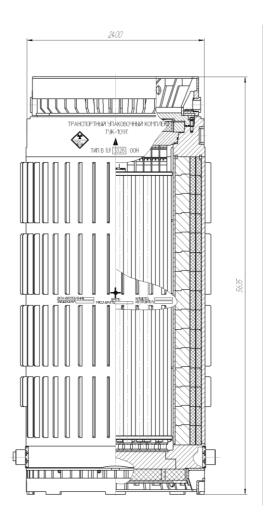
ТУК-137Т (~8 млн уравнений)

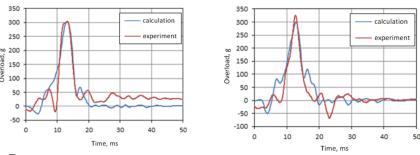
	$\sigma_{u,max}$, [мм]
Логос	1.115853

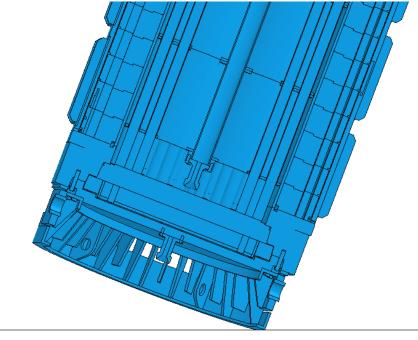
ДИНАМИЧЕСКИЙ АНАЛИЗ


- Явное интегрирование по времени
- 3D и 2D постановки (плоская, осесимметричная)
- МКЭ и SPH подходы
- Библиотека элементов
 - Объемные элементы
 - шестигранный с четырьмя типами различного интегрирования
 - тетраэдр (первого/второго порядка)
 - призма
 - пирамида
 - Оболочечные элементы
 - трехузловой и четырехузловой Хьюса-Лю
 - трехузловой и четырехузловой Белычко—
 Цая
 - Балочные элементы
 - Хьюса-Лю
 - Белычко –Цая
 - Специализированные элементы
 - сосредоточенная масса
 - пружина
 - демпфер

- Библиотека сглаживаний искажений типа «песочных часов»
 - Жесткостные
 - Вязкостные
 - Комбинированные
- Граничные условия
 - Кинематические закрепления
 - Навязанное перемещение
 - Условие совместности деформаций
 - Линейное многоточечное ограничение
 - Циклическая симметрия
 - Жесткие стенки
 - Шарнирные соединения
 - Пользовательские
- Нагрузки
 - Поверхностное давление
 - Узловые силы/моменты
 - Инерционная нагрузка в виде линейных поступательных ускорений
 - Тепловое нагружение
 - Внешние поля
 - Пользовательские


- Контактные алгоритмы
 - Автоматический и выборочный контакт для всех типов элементов
 - Учет силы трения
 - Перестройка контактных границ при разрушении
 - Метод штрафа/метод лагранжевых множителей
- Модели распараллеливания
 - MPI
 - OpenMP
 - Смешанная OpenMP + MPI
 - Максимальный размер практической задачи
 200 млн. конечных элементов, ~2000 MPIпроцессов


ПРИМЕРЫ ЗАДАЧ ДИНАМИЧЕСКОЙ ПРОЧНОСТИ


Определение перегрузок при падении

Общий вид ТУК-109T

Расчетные и экспериментальные перегрузки

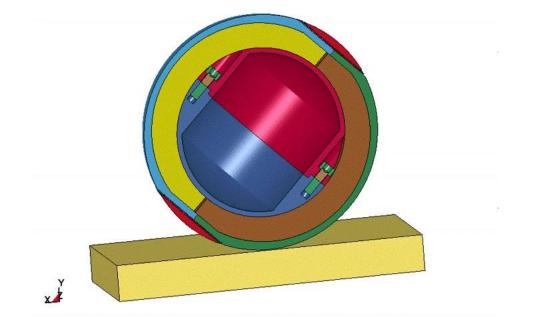
Угловое падение, Н=9м

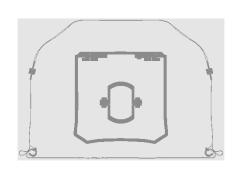
Испытательная установка

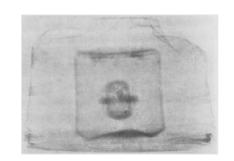
ПРИМЕРЫ ЗАДАЧ ДИНАМИЧЕСКОЙ ПРОЧНОСТИ

Применение Логос при разработке контейнера для транспортирования

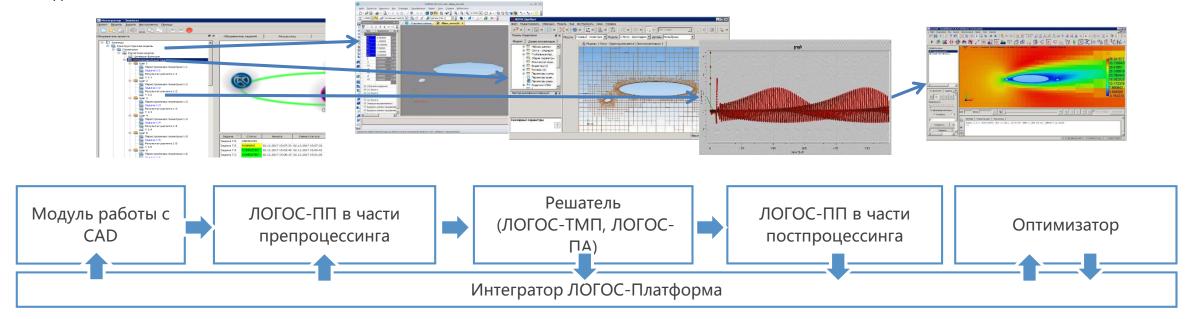
ЛОГОС







Средства проведения параметрических и оптимизационных исследований

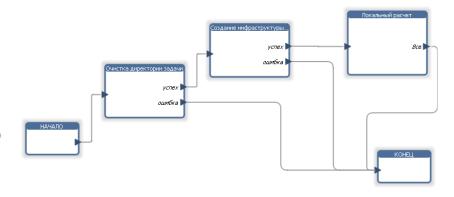


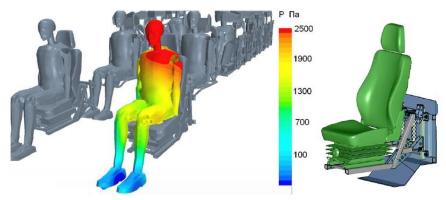
ПРОГРАММНЫЕ ПРОДУКТЫ:

Среда обеспечения управлением сквозным циклом расчетного моделирования, проведения параметрических и оптимизационных исследований

пользователи:

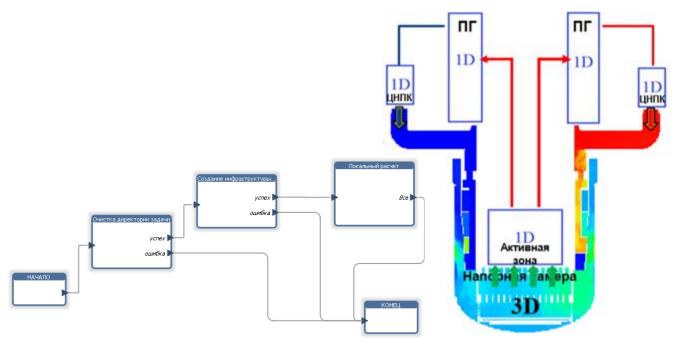
- решение задач параметрической и геометрической оптимизации параметров расчетной модели
- > параметрические исследования с изменением геометрических и расчётных моделей
- > проведение серий расчётов на супер-ЭВМ в удаленном режиме
- базовый графический интерфейс платформы обеспечения сквозного расчётного обоснования проектных решений и организации хранения данных


Сопряженные и связанные задачи. Аэродинамика – Прочность


Воздействие на технику специального назначения

- Логос Аэро-Гидро определение газодинамического воздействия взрывного характера на автомобиль
- Логос Прочность расчет напряженно-деформированного состояния конструкции и перегрузок экипажа

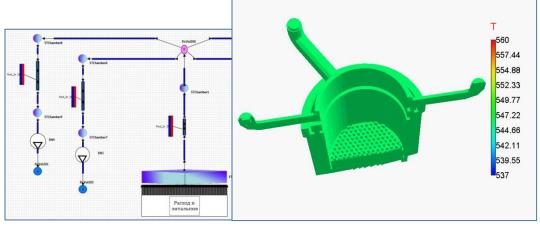
∕○ΓΟΣ[®] Time:0.000000 мс


Снижение перегрузок за счет специальной конструкции сидений

Сопряженные и связанные задачи

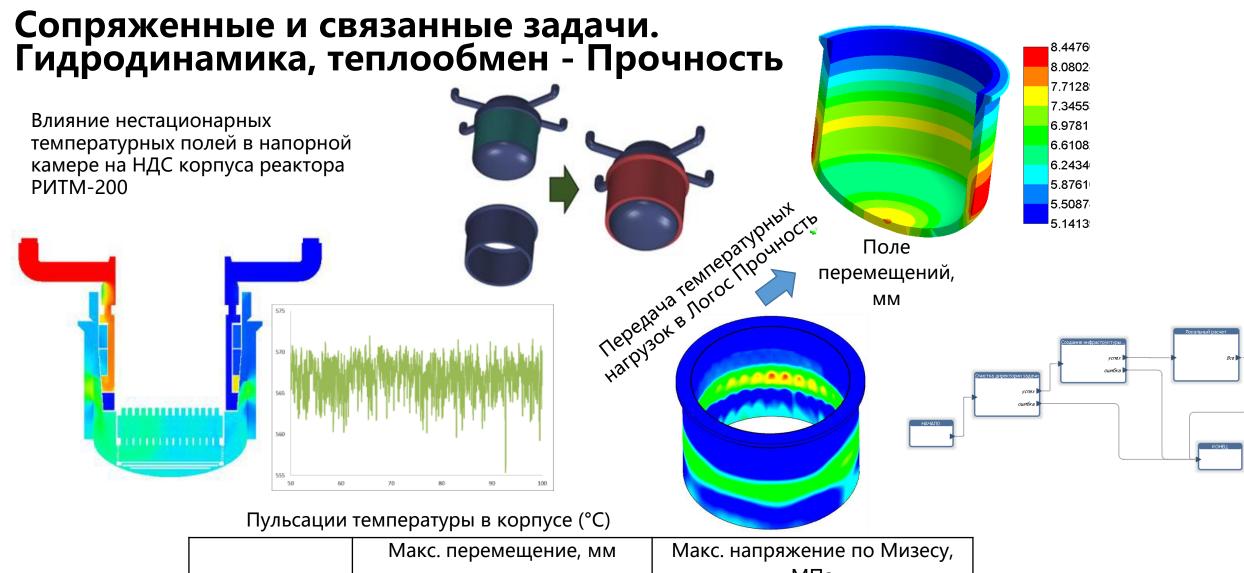
Полномасштабное связанное моделирование работы установки Технология связанного 1D-3D моделирования

при нарушениях нормальной эксплуатации (отключение парогенераторов, насосов, ...)

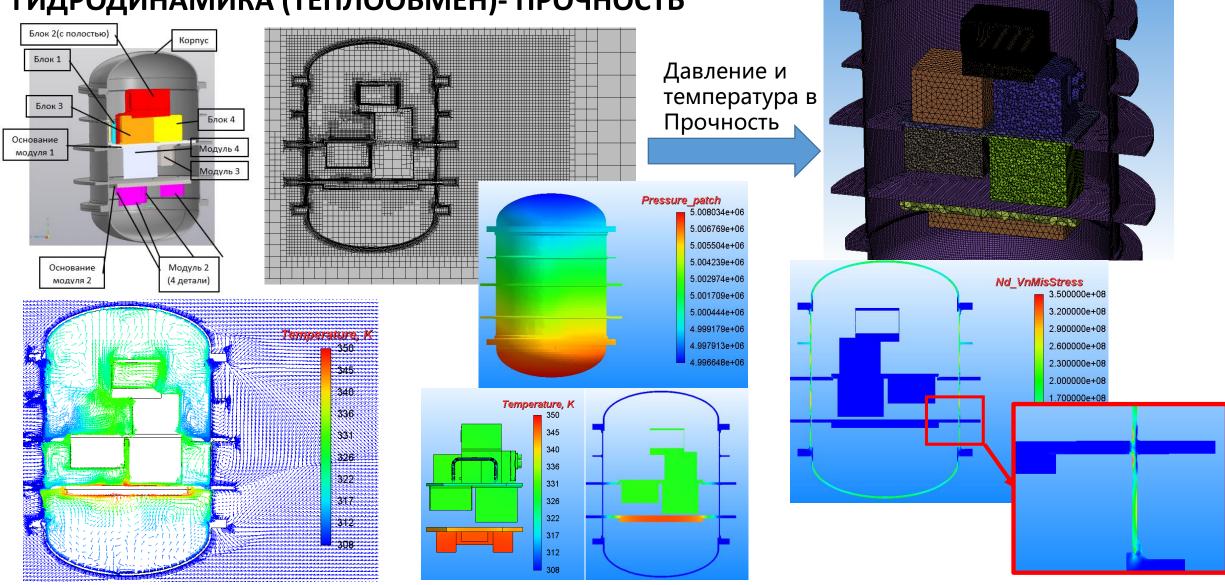


Расчетная 1D-3D модель (учитывается все основное оборудование ПГБ)

1D-код
Одномерная теплогидравлика с учетом двухфазности и влияния нейтроннофизических эффектов в основном оборудовании


3D-код Логос Трехмерное течение теплоносителя в напорной камере на основе полной геометрии с учетом сложных нестационарных тепловых эффектов

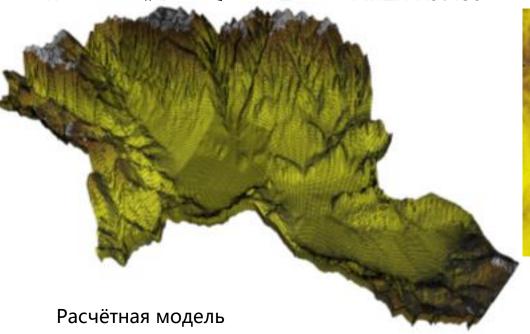
Учет работы систем управления (Simintech)

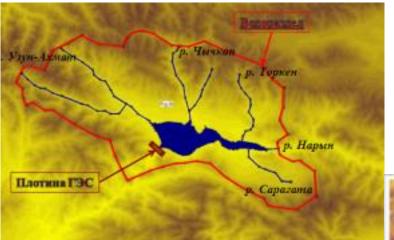

1D модель

3D модель

	Макс. перемещение, мм	Макс. напряжение по Мизесу,
		МПа
ПП Логос	8.448	662
Эталонное	8.448	662
решение		

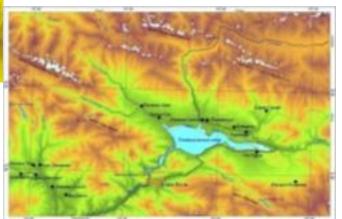
СОПРЯЖЕННЫЕ И СВЯЗАННЫЕ ЗАДАЧИ. ГИДРОДИНАМИКА (ТЕПЛООБМЕН)- ПРОЧНОСТЬ




Логос Гидрогеология

Модель района Токтогульского водохранилища

Заказчик: Институт водных (Крирлем Индроэнергетики Национальной академии наук

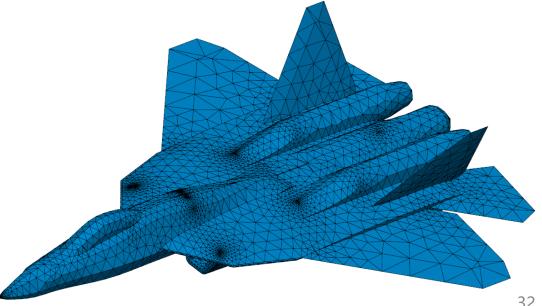


Карты бассейна Токтогульского водохранилища

Цель исследования: Прогнозирование качества и уровня воды Токтогульского водохранилища.

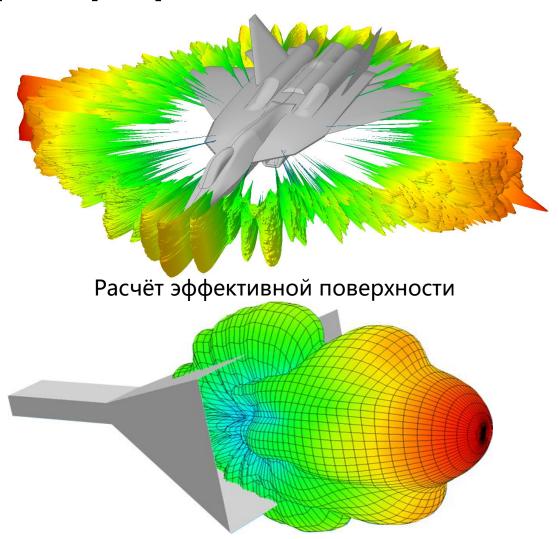
Результат: Создана динамическая модель течения подземных вод окрестностей Токтогульского водохранилища. Особенность модели – перепад высот 3км.

ЛОГОС ЭМИ

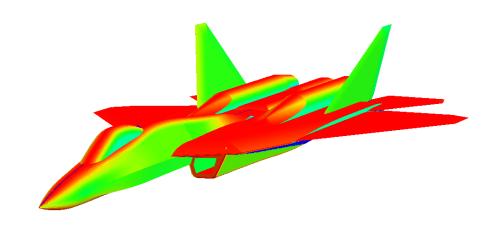


Численное моделирование электродинамических процессов:

- моделирование антенн, излучаемых полей в дальней и ближней зоне
- рассеяние электромагнитных волн на объектах сложной геометрической формы с учетом электрических и магнитных характеристик материалов
- характеристики отражения, поглощения и прохождения электромагнитных волн через слоистые магнито-диэлектрики


Методы математического моделирования

- Метод конечных элементов (FEM) в частотной области
- Многоуровневые методы моментов (МОМ) в частотной области с использованием мозаично-скелетонных и мультипольных аппроксимаций, прямых и итерационных решателей СЛАУ
- Высокочастотные асимптотические методы, основанные на физической (PO), геометрической оптике (GO) и физической теории дифракции (PDT)



Примеры расчётов в ЛОГОС ЭМИ

Расчёт антенно-фидерных устройств (АФУ)

Построение графиков, визуализация результатов расчётов